Nuclear Energy: a New Beginning?

And what role it might play in Australia

Jacopo Buongiorno

TEPCO Professor of Nuclear Science and Engineering

Director, Center for Advanced Nuclear Energy Systems

NSE Nuclear Science and Engineering

science : systems : society

2018 **III** study on the Future of Nuclear

The Future of Nuclear Energy in a Carbon-Constrained World

Key messages:

- The opportunity is carbon \Box
- The problem is cost
- There are ways to reduce it
- Government's help is needed to make it happen

Download the report at http://energy.mit.edu/research/future-nuclear-energy-carbon-constrained-world/

The big picture

The World needs a lot more energy

Global electricity consumption is projected to grow 45% by 2040

The key dilemma is how to increase energy generation while limiting global warming

CO₂ emissions are actually rising... we are NOT winning!

Can we decarbonize using only wind and solar?

Let's look at the evidence

(Energy for Humanity, Tomorrow, the Electricity Map Database) Data source: European Climate Leadership report 2017

 \mathcal{O}

Low carbon intensity in Europe correlates with nuclear and hydro

Nuclear is already the largest source of emission-free electricity in the U.S. and Europe by far

Share of carbon-free electricity (2016 data)

Do we need nuclear to deeply decarbonize the power sector?

The economic argument

Excluding nuclear energy drives up the average cost of electricity in low-carbon scenarios

Simulation of optimal generation mix in power markets

MIT tool: hourly electricity demand + hourly weather patterns + capital, O&M and fuel costs of power plants, backup and storage + ramp up rates

The problem with the no-nuclear scenarios (Tianjin-Beijing-Tangshan example)

Installed Capacities in Tianjin: No Nuclear

Installed Capacities in Tianjin: Nuclear - Nominal

By contrast, installed capacity is relatively constant with nuclear allowed

Sadly, the grid is becoming more complicated, overbuilt, inefficient and expensive... and emissions are only marginally being reduced

- Supply (generators) and demand (end users) are geographically separated and static, requiring massive transmission infrastructure (supply-to-demand model)
- Complex interconnected system is vulnerable to external perturbations (e.g., extreme weather, malicious attacks)

(Cont.)

- Capital-intensive equipment has low utilization factor because of high variability in demand and intermittency in supply (e.g., back-up, storage, solar/wind overcapacity)
- Market is muddled by subsidies (e.g., renewables, nuclear) and unaccounted costs (e.g., social cost of carbon)
- Germany and California have spent over half a trillion dollars on intermittent renewables and have not seen a significant decrease in emissions

Build new NPPs ...but what about cost?

Why are new NPPs in the West so expensive and difficult to build?

ASIA

- >90% detailed design completed before starting construction
- Proven NSSS supply chain and skilled labor workforce
- Fabricators/constructors included in the design team
- A single primary contract manager
- Flexible regulator can accommodate changes in design and construction in a timely fashion

US/Europe

- Started construction with <50% design completed
- Atrophied supply chain, inexperienced workforce
- · Litigious construction teams
- Regulatory process averse to design changes during construction

Aggravating factors From Nuclear Power in an Age of Uncertainty 1984

							US		19,160	mhs/MW	
							W Germany		13,280	mhs/MW	
							Sweden		12,190	mhs/MW	
							Japan		9 670	mns/WW	+
							All 900 to 1000	MW plants	3,070		
							An 500 to 1000	piants			
Groce	bbc auley	ad nor he	ur worke	d constar	t prices						
01055	value auu	eu per no	ui worke	u, constar	it prices		(\mathbf{O}			
Index	100 = 1947						L				
1.800	e e										
10000000											
1,600	-					-	IF				
.,							$\backslash /$				
						/	Y				
1 400	_					/					
1,400						1					
1,200	-					1~		- Agric	ulture		
					101	N					
_					۸.	1		- Manu	facturin	0	
1 000	2				1/1	/		Mano	nacturn	ig	
1,000					AM		100	Mihol	ocolo		
				/			-	- who	esale		
800	800 - V and retail										
600 -											
				/ V		//		econi	only		
1045352413					-				-		
400	400 - Mining										
200440		~		A			_	 Cons 	truction	1	
200	- /	~		~		~~~					
			1				~				
				~							
0		-			1						
	1950	60	70	80	90	2000	2010				
Construction lober productivity boo											
Construction labor productivity has											
doc	docropped in the West										
$u \in U \in a > C \cup U \cup U \cup U = V \cup C \cup U = U = U = U = U = U = U = U = U = U$											

Aggravating factors (2)

Source: Bob Varrin, Dominion Engineering Inc.

Where is the cost of a new NPP?

Sources:

AP1000: Black & Veatch for the National Renewable Energy Laboratory, *Cost and Performance Data for Power Generation Technologies*, Feb. 2012, p. 11 APR1400: Dr. Moo Hwan Kim, POSTECH, personal communication, 2017 EPP: Mr. Jacques: Do Toni, Adjoint Director, EDP.IM. Project, EDE, personal communication, 2017

EPR: Mr. Jacques De Toni, Adjoint Director, EPRNM Project, EDF, personal communication, 2017

- Civil works, site preparation, installation and indirect costs (engineering oversight and owner's costs) dominate overnight cost
- Schedule and discount rate determine financing cost

What innovations could make a difference?

Standardization on multi-unit sites

Advanced Concrete Solutions

Modular Construction Techniques and Factory/Shipyard Fabrication

Applicable to all new reactor technologies

With these innovations it should be possible to:

- Shift labor from site to factories ⇒ reduce installation cost
- Standardize design ⇒ reduce licensing and engineering costs + maximize learning
- Shorten construction schedule ⇒ reduce interest during construction

In other industries (e.g., chemical plants, nuclear submarines) the capital cost reduction from such approaches has been in the 10-50% range

The reward

The business opportunity for nuclear expands dramatically, even at modest decarbonization targets, if its cost decreases

Why advanced reactors

A perfect storm of unfortunate attributes

	System size	Factory fabrication	Testing and licensing	High-return product
Nuclear Plants	Large	No	Lengthy	No
Coal Plants	Large	No	Short	No
Offshore Oil and Gas	Large	No	Medium	No
Chemical Plants	Large	No	Medium	Yes
Satellites	Medium	Yes	Lengthy	No
Jet Engines	Small	Yes	Lengthy	No
Pharmaceuticals	Very Small	Yes	Lengthy	Yes
Automobiles	Small	Yes	Lengthy	Yes
Consumer Robotics	Small	Yes	Short	Yes

has resulted in long (~20 years) and costly (~\$10B) innovation cycles for new nuclear technology

Nuclear DD&D paradigm needs to shift to:

smaller, serial-manufactured systems,

with accelerated testing/licensing,

producing high added-value energy products.

SMALLER SYSTEMS

Small Modular Reactors

High Temperature Gas-Cooled Reactors

[NuScale, GE's BWRX-300] <300 MWe Scaled-down, simplified versions of state-of-the-art LWRs [X-energy] <300 MWe Helium coolant, graphite moderated, TRISO fuel, up to 650-700°C heat delivery

Must reduce scope of civil structures (still ~50% of total capital cost)

Nuclear Batteries

[Westinghouse's eVinci] <20 MWe Block core with heat pipes, self-regulating operations, Stirling engine or air-Brayton

A SUPERIOR SAFETY PROFILE CAN REDUCE TIME AND COST TO LICENSING

+

Demonstrated inherent safety attributes:

- No coolant boiling (HTGR, microreactors)
- Strong fission product retention in robust fuel (HTGR)
- High thermal capacity (SMRs & HTGR)
- Strong negative temperature/power coefficients (all concepts)
- Low chemical reactivity (HTGR)

Engineered passive safety systems:

- Heat removal
- Shutdown

- No need for emergency AC power
- Long coping times
- Simplified design and operations
- Emergency
 planning zone
 limited to site
 boundary

Design certification of NuScale is showing U.S. NRC's willingness to value new safety attributes

HIGHER ADDED VALUE CAN COME FROM

 A strong policy signal recognizing the non-emitting nature, economic impact, and contribution to energy security of nuclear *electricity*

Unlikely and beyond our control

AND/OR

 Capture of new markets (heat, hydrogen, syn fuels, water desal, propulsion, etc.) in which nuclear products could sell at a premium

Within reach with the right technology

Beyond the grid

Where are the carbon emissions?

Much more than electricity

In a low-carbon world, nuclear energy is the lowest-cost, dispatchable heat source for industry

Technology	LCOH \$/MWh-thermal	Dispatchable	Low carbon
Solar PV: Rooftop Residential	190-320	No	Yes
Solar PV: Crystalline Utility Scale	45-55	No	Yes
Solar PV: Thin Film Utility	40-50	No	Yes
Solar Thermal Tower with Storage	50-100	Yes	Yes
Wind	30-60	No	Yes
Nuclear	35-60	Yes	Yes
Natural Gas (U.S. price)	20-40	Yes	No

LCOH = Levelized Cost of Heat (LCOH)

A small (but not insignificant) potential market for nuclear heat in industry *now*

	300 MW	th Reactor	150 MW _{th} Reactor			
Industry	U.S. Capacity (MW _{th} Installed) (%)	Global Capacity (MW _{th} Installed) (%)	U.S. Capacity (MW _{th} Installed) (%)	Worldwide Capacity (MW _{th} Installed) (%)		
Co-Generation Facilities	82,800 (61.7%)	340,800 (59.8%)	86,250 (57.5%)	355,050 (55.7%)		
Refineries	15,600 (10.4%)	76,800 (12.1%)	17,250 (11.5%)	84,750 (13.3%)		
Chemicals	7,800 (5.2%)	36,600 (5.7%)	7,050 (4.7%)	34,200 (5.4%)		
Minerals	2,100 (1.4%)	8,700 (1.4%)	2,100 (1.4%)	8,700 (1.4%)		
Pulp and Paper	12,600 (8.4%)	51,900 (8.1%)	21,300 (14.2%)	87,750 (13.8%)		
Other	13,200 (8.8%)	55,200 (8.7%)	16,050 (10.7%)	66,450 (10.4%)		
Total	134,100 (100%)	570,000 (100%)	150,000 (100%)	636,900 (100%)		

 \sim 240 million metric tons of CO₂-equivalent per year (>7% of the total annual U.S. GHG emissions)

Methodology:

- EPA database for U.S. sites emitting 25,000 ton-CO₂/year or more
- Considered sites needing at least 150 MW of heat
- Nuclear heat delivered at max 650°C (with nuclear battery or HTGR technology)
- Chemicals considered include ammonia, vinyl chloride, soda ash, nylon, styrene
- Heat from waste stream not accessible

In the transportation sector, hydrogen and/or electrification could create massive growth opportunities for nuclear

Country	New nuclear capacity required to decarbonize the transportation sector				
	With electrification*	With hydrogen**			
U.S.	$285 \mathrm{GW}_{\mathrm{e}}$	342 GW $_{\rm e}$ and 111 GW $_{\rm th}$			
France	$22 \mathrm{GW}_{\mathrm{e}}$	28 GW $_{\rm e}$ and 9 GW $_{\rm th}$			
Japan	33 GW _e	41 GW _e and 13 GW _{th}			
Australia	18 GW _e	22 GW $_{\rm e}$ and 7 GW $_{\rm th}$			
World	1060 GW _e	1315 GW_{e} and 428 $\mathrm{GW}_{\mathrm{th}}$			

* Assumes that (i) the efficiency of internal combustion engines is 20%, and (ii) the efficiency of electric vehicles is 60%

** Assumes that (i) the efficiency of internal combustion engines is 20%, (ii) the efficiency of hydrogen fuel cells is 50%, (iii) hydrogen gas has a lower heating value of approximately 121.5 MJ/kg-H₂, and (iv) the energy requirement for high-temperature electrolysis of water is 168 MJ/kg-H₂, of which 126 MJ/kg-H₂ is electrical and 41 MJ/kg-H₂ is thermal.

What's in for Australia?

Decarbonize the grid at reasonable cost

MIT calculations for the South Australia electric grid. Average system cost of electricity is in USD \$/MWh. "Brownfield Wind" refers to scenarios in which existing SA wind generation is included (and treated as fully-amortized). "Greenfield Wind" allows for an unconstrained optimal mix, in which the capital cost of wind has to be recovered.

Freshwater for everyone

A 300 MWe nuclear reactor (such as BWRX-300) would be able to produce \sim 2 Mm³/day (or 730 Mm³/day) of desalinated water^{*}, enough to render a semi-arid area of ~5000 km² suitable for agriculture

Israel's Sorek Desalination Plant (left) produces ~0.63 Mm³/day, most of which is used for agriculture in arid land in the Negev Desert (right)

Nuclear-powered water desalination has a low carbon footprint of ~50 gCO₂/m³ vs. World's average ~2000 gCO₂/m³

*Assumes Reverse Osmosis (RO) plant with electricity consumption of 3.5 kWh/m³

Supply affordable and clean electricity to remote mining operations

- Requires nuclear reactors with dry cooling technology (available)
- Expansion of Olympic Dam alone could require an additional ~640 MW of electricity*

Supply nuclear fuel to the world

Australia has the largest reserves of uranium in the world by far

Reasonably Assured U Resources (from IAEA "redbook" 2018)

Supply nuclear fuel to the world (cont.)

* Source: Uranium Resources, Production and Demand, IAEA "redbook", 2018

- Currently produces about 10% of world's Uranium (all for power plants)
- AUD 500 million export value in 2017
- ~6300 jobs*

Securing spent fuel for the world may be a major economic opportunity for Australia

- Ideal arid climate
- Remote locations, far from population centers:
- Superior physical security at site
- Ease of transportation to site
- Signee of NPT
- Technically sophisticated, politically stable country (and not an international 'bully')
- Market size: U.S. alone accumulates ~\$1B worth of spent nuclear fuel every year
- May enhance economic value of aboriginal land in the deep outback

Take-away messages from the MIT study

- The opportunity is carbon
- The problem is cost
- There are ways to reduce it
- Government's help is needed to make it happen

